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1. Introduction

With the high rate for Standard Model QCD background processes at the forthcoming

Large Hadronic Collider (LHC), the calculation of multi-jet(particle) production cross-

sections becomes an essential tool for the discovery of new physics. In order to achieve a

good precision within the framework of perturbative QCD, next-to-leading order (NLO)

calculations are usually needed. This is in general a very complicated task in the case of

hadronic colliders due to the increasing number of involved partons and, for that reason,

such a level of accuracy has been reached only for a few processes. In several the cases,

one still has to rely on tree level calculations. It turns out that even at the lowest order

the situation starts to be complicated at the level of 5-jets, involving the calculation of a

few thousand Feynman diagrams.

After profiting from the great simplifications [1, 2] coming out of the combination of the

helicity method [3 – 5] and the application of color decomposition rules for amplitudes [6, 7],

the task can be performed using automatized algorithms, like MadEvent [8]. Even though

feasible, that implies some non-negligible CPU time for the computation of a few million

events, as can be needed for simulations. Counting with analytical compact expressions

for the amplitudes would certainly be a solution for this serious inconvenience.

Fortunately, the situation has drastically improved during the last couple of years. Af-

ter the pioneering proposal of Witten [9] about the relation between tree level amplitudes

and strings in twistor space, it was possible to formulate a set of rules to compute gauge

amplitudes by simple recursion relations involving only “scalar propagators” and the maxi-

mally helicity-violating (MHV) amplitudes, those where only two particles have a different

polarization from the rest. Strictly speaking the first set of relations presented by Cachazo,

Svrček and Witten (CSW) [10] involved the off-shell continuation of the MHV amplitudes,

situation improved by the proposal of Britto, Cachazo and Feng (BCF) [11] (later con-

firmed by the same authors and Witten [12]), after showing that the usual on-shell MHV

amplitudes become the key ingredient when complex continuation of some of the external

momenta is allowed. The simplicity of the BCFW method allows to obtain very compact

expressions for those amplitudes, explicitly exposing the high degree of symmetry hidden

in the framework of direct Feynman diagram calculations.
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The new method, initially considered for pure gluon amplitudes, has been successfully

extended to account for the presence of massless quarks [13, 14], Higgs boson [15], massive

gauge bosons [16], photons [17] and even massive fermions [18]. In the case of pure gluonic

processes, helicity amplitudes involving up to eight particles have been computed. For those

involving also massless fermions calculations have been performed up to six particles [19,

20]. Furthermore, recent progress has been done to extend the validity of the recursion

relations to one-loop amplitudes in QCD [21 – 23].

In this paper, we present the first calculation of the full set of helicity amplitudes involv-

ing a quark-antiquark pair and five-gluons, needed for the computation of tree-level five-jet

cross-sections, and an ingredient for the real part of NLO(NNLO) results for four(three)-jet

observables in hadronic collisions.

This paper is organized as follows: in Section 2 we review the main ingredients of the

BCFW formulation and recall its limitations when fermions are present. In Section 3 we

introduce the main results for the complete set of qq̄5g helicity amplitudes, while in Section

4 we present our conclusions.

2. Color decomposition, helicity and BCFW

The color decomposition for a qq̄ pair and n gluons at tree level is particularly simple. The

amplitude M
(0)
n can be written in terms of the partial amplitude A

(0)
n as [1]

M (0)
n (ki, λi, ai) = gn−2

∑

σ∈Sn−2

(T aσ(3) . . . T aσ(n))i1
j̄2

A(0)
n (1λ1

q , 2λ2
q̄ , σ(3λ3), . . . , σ(nλn)) , (2.1)

where Sn−2 is the group of permutations of n − 2 symbols, with 1 representing the quark

with color i1 and 2 the antiquark with color j̄2. The upper-index λl indicates the helic-

ity of particle l carrying momentum kl. The normalization for the color matrices in the

fundamental representation is Tr
(

T aT b
)

= δab.

In the framework of the helicity formalism [3 – 5], with the spinors denoted as

|i±〉 = |k±
i 〉 = ψ±(ki) 〈i±| = 〈k±

i | = ψ±(ki) , (2.2)

the partial amplitudes can be written in terms of the spinors inner-products

〈ij〉 = 〈i−|j+〉 = ψ−(ki)ψ+(kj)

[ij] = 〈i+|j−〉 = ψ+(ki)ψ−(kj) , (2.3)

and a few simple combinations of them, like

〈i|pa|j] ≡ 〈ia〉[aj]

〈i|papb|j〉 ≡ 〈ia〉[ab]〈bj〉 . (2.4)

In our convention all particles are considered to be outgoing and, following the QCD

literature [1, 2], we fix the sign of the inner products such that 〈ij〉[ji] = sij
1.

1When comparing with results obtained using the string-like conventions just notice that [ij] carries the

opposite sign

– 2 –
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The BCFW recurrence relation is based on the analytical properties of the amplitude

when the spinors of two external legs (denoted by j and l) are shifted as

|ĵ〉 = |j〉
|ĵ] = |j] − z|l]
|l̂〉 = |l〉 + z|j〉
|l̂] = |l] . (2.5)

After this shift, the BCFW formula simply reads

A(0)
n (1λ1 , . . . , nλn) =

∑

r,s

∑

λ=±

A
(0)
s−r+2(r

λr , . . . , ĵλj , . . . , s,−K̂λ
rs)

1

K2
rs

A
(0)
n−s+r(K̂

−λ
rs , (s + 1)λ(s+1) , . . . , l̂λl , . . . , (r − 1)λ(r−1)) , (2.6)

where Krs = kr + . . . + kj . . . + ks and the (complex) shift variable z takes the value

zrs = − (Krs)
2

〈j|Krs|l]
. (2.7)

At this point we should make a few remarks on eq. (2.6). First of all, each term is

the product of two helicity amplitudes with a fewer number of particles and a propagator.

The sum over r and s is not actually a sum over all of their possible values, but instead

over all the possible configurations where the j particle belongs to one of the amplitudes

and the l particle to the other one. For future reference, we shall call the amplitude with

the j particle “upper amplitude” and the one including the l particle “lower amplitude”.

There are certain restrictions to the massless particles that can be used as the reference

lines j and l; in general they can not be chosen as (λj , λl) = (+,−). Furthermore, quarks

and antiquarks of the same flavor can not be chosen if they are adjacent and for adjacent

quarks and gluons the helicities should better be opposite [19].

We should also notice that the sum includes amplitudes involving only 3 on-shell

partons. Because of helicity conservation these amplitudes would vanish if the momenta

were not shifted. It is straightforward to show that, after the shift in eq. (2.5), only the 3

parton upper MHV and the 3-parton lower MHV amplitudes become non-zero. Therefore,

the ggg and qq̄g MHV amplitudes [24], which with our phase conventions read

A
(0)
3 (1+

g , 2−g , 3−g ) =
〈23〉3

〈12〉〈31〉

A
(0)
3 (1+

q , 2−q̄ , 3−g ) =
〈23〉2
〈21〉 , (2.8)

are the key ingredients of the recursion relations. The corresponding MHV amplitudes can

be obtained from those above by flipping the helicities applying parity inversion (〈ij〉 → [ji]

and an extra factor of -1 for each pair of quarks participating) and charge conjugation plus

reflection and cyclic symmetries of the amplitudes. Using the recursion relations it is

possible to construct the tree level amplitude for n-partons just by conveniently iterating

these building blocks.
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Figure 1: Diagrams contributing to A
(0)
7 (1+

q
, 2−q̄ , 3+, 4+, 5+, 6−, 7−)

3. qq̄5g helicity amplitudes

There are in principle 27 different helicity amplitudes for this process but half of them,

those with the quark and the antiquark carrying the same helicity, are trivially vanishing

for massless particles. Furthermore, it is enough to present the results for one of the two

possible combinations of qq̄ helicities (we choose here 1+
q 2−q̄ ); the other can be obtained

by parity and charge conjugation. Out of the remaining 32 amplitudes, those with all

gluons with the same helicity (two) are vanishing and other 10 are either MHV or MHV

amplitudes [24], simply reading

A
(0)
7 (1+

q , 2−q̄ , 3+
g , . . . , i−g . . . , 7+

g ) =
〈2i〉3〈1i〉

∏7
l=1〈l l + 1〉

A
(0)
7 (1+

q , 2−q̄ , 3−g , . . . , i+g . . . , 7−g ) = − [1i]3[2i]
∏7

l=1[l l + 1]
, (3.1)

where i represents the gluon with the opposite helicity to the others.

Therefore, there are only 10 non-trivial NMHV, corresponding to three gluons with

helicity plus and two with helicity minus, amplitudes to be computed. Again, the 10 NMHV

amplitudes can be obtained by the discrete symmetries P and C. Further simplifications

in the number of independent amplitudes could be achieved by applying supersymmetric

relations. We rather present the explicit results for those 10 amplitudes in order to provide

the most compact expressions for direct use.

The use of the BCFW formula for qq̄5g amplitudes involves the appearance of, at

most, four different arrangements in the recursion. This is shown in figure 1 for the

(1+
q , 2−q̄ , 3+, 4+, 5+, 6−, 7−) helicity configuration, where gluons 6 and 7 were chosen as

lines j and l in eq. (2.5), respectively. As known, a smart election for the reference lines

can result into more compact expressions for the amplitudes.

In this case diagram (a), denoted as (2, 3, 4, 5, 6̂|7̂, 1) vanishes because the two fermions

appear in different subamplitudes, fixing the helicity of the propagator and selecting a 3-

parton lower MHV amplitude. The remaining diagrams ( (3, 4, 5, 6̂|7̂, 1, 2), (4, 5, 6̂|7̂, 1, 2, 3),

and (5, 6̂|7̂, 1, 2, 3, 4)) are simply products of MHV and/or MHV amplitudes, so each of

– 4 –
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them contributes with a single term. Our final result reads

A
(0)
7 (1+

q , 2−q̄ , 3+, 4+, 5+, 6−, 7−) = − 〈6|7 + 2|1]3
s712[71][12]〈34〉〈45〉〈56〉〈3|1 + 2|7] (3.2)

+
〈2|6 + 7|5]3

s567〈12〉〈23〉〈34〉[56][67]〈4|5 + 6|7] −
〈2|(1 + 3)(4 + 5)|6〉3

s123s456〈12〉〈23〉〈45〉〈56〉〈3|1 + 2|7]〈4|5 + 6|7] ,

where sijk = (pi + pj + pk)
2. Factorization properties of the amplitudes in the collinear

and soft limits provide stringent consistency checks to them. For example, when gluon 6

is soft, eq. (3.2) becomes

A
(0)
7 (1+

q , 2−q̄ , 3+, 4+, 5+, 6−, 7−)
k6→0−−−→

( −〈27〉3
〈12〉〈23〉〈34〉〈45〉〈57〉

)(

− [51]

[56][61]

)

, (3.3)

i.e., just the product of the six particle amplitude A
(0)
6 (1+

q , 2−q̄ , 3+, 4+, 5+, 7−) times the

eikonal factor for the emission of a soft gluon with negative helicity.

In our search for compact expressions, we can show that the NMHV 7-parton ampli-

tudes have at most six terms. In any amplitude, diagrams like (a) contribute with (at

most) three terms (since it involves a 6 parton NMHV amplitude [1, 19]) and each of the

other diagrams adds a single term, if they don’t vanish.

The amplitude corresponding to the ordering + + − + − on the gluon helicities is

computed choosing j = 3 and l = 4 as reference lines, resulting

A
(0)
7 (1+

q , 2−q̄ , 3+, 4+, 5−, 6+, 7−) =

− 〈5|3 + 4|1]3〈57〉4
[12]〈34〉〈45〉〈56〉〈67〉〈5|6 + 7|1]〈3|(1 + 2)(6 + 7)|5〉〈7|(1 + 2)(3 + 4)|5〉

+
〈27〉3〈5|3 + 4|6]4

s712s345〈12〉〈34〉〈45〉〈3|4 + 5|6]〈2|7 + 1|6]〈7|(1 + 2)(3 + 4)|5〉

− 〈25〉3[16]3〈5|7 + 1|6]
s671〈23〉〈34〉〈45〉[67][71]〈2|7 + 1|6]〈5|6 + 7|1]

− 〈27〉3[46]4
s456〈12〉〈23〉[45][56]〈3|4 + 5|6]〈7|6 + 5|4]

+
〈2|1 + 3|4]3〈57〉4

s123s567〈12〉〈23〉〈56〉〈67〉〈7|6 + 5|4]〈3|(1 + 2)(6 + 7)|5〉 , (3.4)

where we have splitted the result in the following order: the first three terms come

from (6, 7, 1, 2, 3̂|4̂, 5), the next single term from (7, 1, 2, 3̂|4̂, 5, 6) and the last term from

(1, 2, 3̂|4̂, 5, 6, 7). The contribution from (2, 3̂|4̂, 5, 6, 7, 1) vanishes because the “fermion

propagator” selects an upper MHV amplitude.

The amplitude corresponding to the ordering + +−−+ on the gluon helicities is also

computed choosing j = 3 and l = 4 as reference lines, obtaining

A
(0)
7 (1+

q , 2−q̄ , 3+, 4+, 5−, 6−, 7+) =

+
[17]2〈25〉3〈5|1 + 6|7]

s671〈23〉〈34〉〈45〉[67]〈5|6 + 7|1]〈2|7 + 1|6]

– 5 –
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− 〈2|(7 + 1)(3 + 4)|5〉3〈1|(2 + 7)(3 + 4)|5〉
s712s345〈71〉〈12〉〈34〉〈45〉〈3|4 + 5|6]〈2|7 + 1|6]〈7|(1 + 2)(3 + 4)|5〉

− 〈5|4 + 3|1]3〈56〉3
[12]〈34〉〈45〉〈67〉〈5|6 + 7|1]〈3|(1 + 2)(6 + 7)|5〉〈7|(1 + 2)(3 + 4)|5〉

+
〈2|5 + 6|4]3〈1|5 + 6|4]

s456〈71〉〈12〉〈23〉[45][56]〈3|4 + 5|6]〈7|5 + 6|4]

+
〈2|1 + 3|4]3〈56〉3

s567s123〈12〉〈23〉〈67〉〈7|5 + 6|4]〈3|(1 + 2)(6 + 7)|5〉 . (3.5)

The first three terms come from (6, 7, 1, 2, 3̂|4̂, 5), the fourth from (7, 1, 2, 3̂|4̂, 5, 6) and the

fifth from (1, 2, 3̂|4̂, 5, 6, 7). Again, because of the “fermion propagator” and the helicities

of the particles involved, (2, 3̂|4̂, 5, 6, 7, 1) has a null contribution to this result.

The amplitude corresponding to the ordering + − + + − is obtained selecting j = 5

and l = 6 as reference lines,

A
(0)
7 (1+

q , 2−q̄ , 3+, 4−, 5+, 6+, 7−) =

− 〈24〉3〈7|5 + 6|1]3〈4|(2 + 3)(5 + 6)|7〉
s234s567〈23〉〈34〉〈56〉〈67〉〈4|2 + 3|1]〈5|6 + 7|1]〈2|(3 + 4)(5 + 6)|7〉

− 〈27〉3〈7|5 + 6|3]4
〈12〉[34]〈56〉〈67〉〈7|1 + 2|3]〈7|5 + 6|4]〈5|(3 + 4)(1 + 2)|7〉〈2|(3 + 4)(5 + 6)|7〉

− [13]3〈47〉4
s123[12]〈45〉〈56〉〈67〉〈4|2 + 3|1]〈7|1 + 2|3]

− 〈24〉3[16]3〈4|7 + 1|6]
s671〈23〉〈34〉〈45〉[67][71]〈2|7 + 1|6]〈5|6 + 7|1]

− 〈27〉3〈4|5 + 3|6]4
s712s345〈12〉〈34〉〈45〉〈3|4 + 5|6]〈2|7 + 1|6]〈5|(3 + 4)(1 + 2)|7〉

− 〈27〉3[56]3
s456〈12〉〈23〉[45]〈3|4 + 5|6]〈7|6 + 5|4] . (3.6)

This formula was written in the following order: the first three terms come from (1, 2, 3, 4,

5̂|6̂, 7), the next one from (2, 3, 4, 5̂|6̂, 7, 1), a single term from (3, 4, 5̂|6̂, 7, 1, 2) and the last

one comes from (4, 5̂|6̂, 7, 1, 2, 3).

The ordering + − + − + can be obtaining setting j = 6 and l = 7,

A
(0)
7 (1+

q , 2−q̄ , 3+, 4−, 5+, 6−, 7+) =

〈16〉〈24〉3〈4|2 + 3|5]〈6|7 + 1|5]3
s671s234〈23〉〈34〉〈67〉〈71〉〈1|6 + 7|5]〈2|3 + 4|5]〈6|(7 + 1)(2 + 3)|4〉

+
〈16〉〈26〉3 [35]4

s345〈67〉〈71〉〈12〉[34][45]〈6|4 + 5|3]〈2|3 + 4|5]

+
〈16〉〈46〉4〈6|7 + 1|3]3

〈45〉〈56〉〈67〉〈71〉〈6|4 + 5|3]〈6|7 + 1|2]〈6|(4 + 5)(2 + 3)|1〉〈6|(7 + 1)(2 + 3)|4〉

+
[27][17]2〈46〉4

s712[12]〈34〉〈45〉〈56〉〈3|1 + 2|7]〈6|7 + 1|2]

– 6 –
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+
〈1|2 + 3|7]〈2|1 + 3|7]3〈46〉4

s123s456〈12〉〈23〉〈45〉〈56〉〈4|5 + 6|7]〈3|1 + 2|7]〈6|(4 + 5)(2 + 3)|1〉

+
〈14〉〈24〉3 [57]4

s567〈12〉〈23〉〈34〉[56][67]〈4|5 + 6|7]〈1|6 + 7|5] , (3.7)

where the first three terms come from (2, 3, 4, 5, 6̂| 7̂, 1), the fourth term from (3, 4, 5, 6̂|7̂,

1, 2), the fifth from (4, 5, 6̂|7̂, 1, 2, 3) and the sixth term from (5, 6̂|7̂, 1, 2, 3, 4).
The amplitude corresponding to the ordering +−−++ is obtained by choosing j = 6

and l = 7 as reference lines,

A
(0)
7 (1+

q , 2−q̄ , 3+, 4−, 5−, 6+, 7+) =

+
〈4|(2 + 3)(6 + 7)|1〉(s671)

2〈24〉3
s234〈23〉〈34〉〈67〉〈71〉〈1|6 + 7|5]〈2|3 + 4|5]〈4|(2 + 3)(7 + 1)|6〉

+
〈1|4 + 5|3]〈2|4 + 5|3]3

s345〈67〉〈71〉〈12〉[34][45]〈2|3 + 4|5]〈6|5 + 4|3]

− 〈16〉〈45〉3〈6|7 + 1|3]3
〈56〉〈67〉〈71〉〈6|7 + 1|2]〈6|5 + 4|3]〈6|(4 + 5)(2 + 3)|1〉〈4|(2 + 3)(7 + 1)|6〉

+
[27][17]2〈45〉3

s712[12]〈34〉〈56〉〈3|1 + 2|7]〈6|7 + 1|2]

+
〈1|2 + 3|7]〈2|1 + 3|7]3〈45〉3

s123s456〈12〉〈23〉〈56〉〈3|1 + 2|7]〈4|5 + 6|7]〈6|(4 + 5)(2 + 3)|1〉

+
〈14〉〈24〉3[67]3

s567〈12〉〈23〉〈34〉[56]〈4|5 + 6|7]〈1|6 + 7|5] , (3.8)

where we have written the result in the following order: the first three terms come from

(2, 3, 4, 5, 6̂|7̂, 1), a single term from (3, 4, 5, 6̂|7̂, 1, 2), the next term from (4, 5, 6̂|7̂, 1, 2, 3)
and the last term from (5, 6̂|7̂, 1, 2, 3, 4).

The ordering − + + + −, using j = 7 and l = 1, results

A
(0)
7 (1+

q , 2−q̄ , 3−, 4+, 5+, 6+, 7−) =

〈7|5 + 6|4]3〈27〉3
〈12〉[34]〈56〉〈67〉〈7|1 + 2|3]〈2|(3 + 4)(5 + 6)|7〉〈7|(1 + 2)(3 + 4)|5〉

+
〈3|4 + 5|6]3〈27〉3

s712s345〈12〉〈34〉〈45〉〈2|7 + 1|6]〈7|(1 + 2)(3 + 4)|5〉

− 〈7|1 + 3|2]〈7|2 + 3|1]3
s123[12][23]〈45〉〈56〉〈67〉〈7|1 + 2|3]〈4|3 + 2|1]

− 〈7|(5 + 6)(2 + 4)|3〉〈7|5 + 6|1]3〈23〉3
s234s567〈23〉〈34〉〈56〉〈67〉〈4|3 + 2|1]〈5|6 + 7|1]〈7|(5 + 6)(3 + 4)|2〉

− 〈3|7 + 1|6]〈23〉2 [16]3
s671〈34〉〈45〉[67][71]〈2|7 + 1|6]〈5|6 + 7|1] . (3.9)

The different contributions appear in the following order: the first two terms come from

(3, 4, 5, 6, 7̂|1̂, 2), the third term comes from (4, 5, 6, 7̂|1̂, 2, 3), the fourth term from (5, 6, 7̂|
1̂, 2, 3, 4) and the last term from (6, 7̂|1̂, 2, 3, 4, 5).

– 7 –
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The amplitude corresponding to the ordering −+−++ is obtained by selecting j = 5

and l = 6 as reference lines,

A
(0)
7 (1+

q , 2−q̄ , 3−, 4+, 5−, 6+, 7+) =

− 〈15〉[24]〈5|2 + 3|4]3
s234[23][34]〈56〉〈67〉〈71〉〈5|3 + 4|2]〈1|2 + 3|4]

+
〈5|6 + 7|2]〈5|6 + 7|1]2〈35〉4

[12]〈34〉〈45〉〈56〉〈67〉〈5|3 + 4|2]〈3|(1 + 2)(6 + 7)|5〉〈5|(3 + 4)(1 + 2)|7〉

+
〈13〉〈23〉2〈5|6 + 7|4]4

s567s123〈12〉〈56〉〈67〉〈7|6 + 5|4]〈1|2 + 3|4]〈3|(1 + 2)(6 + 7)|5〉

+
〈1|7 + 2|6]〈2|7 + 1|6]2〈35〉4

s712s345〈71〉〈12〉〈34〉〈45〉〈3|4 + 5|6]〈5|(3 + 4)(1 + 2)|7〉

+
〈13〉〈23〉2 [46]4

s456〈71〉〈12〉[45][56]〈3|4 + 5|6]〈7|5 + 6|4] , (3.10)

where we have written the result in the following order: the three terms from (1, 2, 3, 4, 5̂|
6̂, 7), a single term from (3, 4, 5̂|6̂, 7, 1, 2) and the single term from (4, 5̂|6̂, 7, 1, 2, 3). The

contribution from (2, 3, 4, 5̂|6̂, 7, 1) vanishes because of the “fermion propagator” and the

helicities of the particles involved.

The ordering − + + − + is solved choosing j = 3 and l = 4

A
(0)
7 (1+

q , 2−q̄ , 3−, 4+, 5+, 6−, 7+) =

〈16〉〈3|4 + 5|2]〈6|(7 + 1)(4 + 5)|3〉3
s345s671〈34〉〈45〉〈67〉〈71〉〈5|4 + 3|2]〈6|7 + 1|2]〈1|(6 + 7)(4 + 5)|3〉

+
[27][17]2〈36〉4

s712[12]〈34〉〈45〉〈56〉〈6|7 + 1|2]〈3|1 + 2|7]

− 〈13〉〈23〉2〈3|4 + 5|7]4
〈12〉〈34〉〈45〉[67]〈3|4 + 5|6]〈3|1 + 2|7]〈3|(1 + 2)(6 + 7)|5〉〈1|(6 + 7)(4 + 5)|3〉

+
〈13〉〈23〉2 [45]3

s456〈71〉〈12〉[56]〈3|4 + 5|6]〈7|5 + 6|4]

+
〈13〉〈23〉2〈6|5 + 7|4]4

s567s123〈12〉〈56〉〈67〉〈1|2 + 3|4]〈7|5 + 6|4]〈3|(1 + 2)(6 + 7)|5〉

− 〈16〉[24]〈6|2 + 3|4]3
s234[23][34]〈56〉〈67〉〈71〉〈1|2 + 3|4]〈5|4 + 3|2] . (3.11)

This expression was splitted in the following order: the first three terms come from

(6, 7, 1, 2, 3̂|4̂, 5), the fourth from (7, 1, 2, 3̂|4̂, 5, 6), the fifth term from (1, 2, 3̂|4̂, 5, 6, 7) and

the sixth term from (2, 3̂|4̂, 5, 6, 7, 1).

Finally, the non-alternating amplitude − − + + + (from j = 4 and l = 5) turns out

to be

A
(0)
7 (1+

q , 2−q̄ , 3−, 4−, 5+, 6+, 7+) =
〈1|(2 + 7)(5 + 6)|4〉〈2|(7 + 1)(5 + 6)|4〉2

s456s712〈71〉〈12〉〈45〉〈56〉〈6|5 + 4|3]〈7|1 + 2|3]

− 〈4|1 + 3|2]〈4|2 + 3|1]2
s123[12][23]〈45〉〈56〉〈67〉〈7|1 + 2|3] +

〈1|3 + 4|5]〈2|3 + 4|5]2
s345〈67〉〈71〉〈12〉[34][45]〈6|5 + 4|3] , (3.12)
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where we have written the result in the following order: the first two terms come from

(7, 1, 2, 3, 4̂|5̂, 6), and the last one from (3, 4̂|5̂, 6, 7, 1, 2). Contributions from (1, 2, 3, 4̂|5̂, 6, 7)

and (2, 3, 4̂|5̂, 6, 7, 1) vanish because of helicity conservation.

As a byproduct of this calculation, several QED amplitudes can be obtained form our

results, by turning any number of gluons into photons. In order to disguise gluons as

photons one has to replace in eq. (2.1) the SU(3) color group of QCD by the U(1) group

of QED. The color decomposition for two quarks, m photons and r gluons [25] becomes

M (0)
n (ki, λi, ai) = gr(

√
2eQq)

m
∑

σ∈Sr

(T aσ(3) . . . T aσ(r+2))i1
j̄2

A(0)
n (1λ1

q , 2λ2
q̄ , σg(3

λ3), . . . , σg((r + 2)λ(r+2)), γr+3, . . . , γn) ,

(3.13)

where Sr is the group of permutations of r symbols with 1 being the quark with color

i1, 2 the antiquark with color j̄2, and λl represents the helicity of the l particle carrying

momentum kl. This formula can be easily obtained from eq. (2.1) by converting the last

m gluons into photons. In order to make this conversion, one has to replace the factor

gT a with
√

2eQqI, where I is the identity matrix. Since I commutes with the T a matrices,

all possible photon-quark couplings contribute to the same color structure. Therefore to

obtain the amplitudes involving photons, one has to sum over all the permutations where

the photon “moves” in the amplitude while the gluons remain fixed.

From the previous results one can change any number of gluons into photons, using the

procedure described in the previous paragraph, allowing to obtain the following QED/QCD

amplitudes: qq̄4gγ, qq̄3g2γ, qq̄2g3γ, qq̄g4γ and qq̄5γ .

4. Conclusions

In this paper we presented all seven parton tree level NMHV amplitudes involving a

fermionic pair and five gluons, obtained by use of the BCFW recursion relations. With

the knowledge of these amplitudes the full set of helicity amplitudes for the two quarks

plus five gluons process is available. The trivial MHV amplitudes are giving by the Parke-

Taylor formulae and the NNMHV amplitudes are also NMHV so they can be obtained by

performing the adequate combination of P and C discrete symmetries over our results. We

should emphasize that the results presented in this paper have been checked in all possible

collinear and soft limits, setting and stringent test for the correctness of the amplitudes 2.

Furthermore, by making simple replacements in the color decomposition formula, one

can obtain several seven parton QED/QCD amplitudes involving two quarks, m photons

and r gluons (where m + r = 5).

These amplitudes are a main ingredient for the calculation of multijets cross sections

in hadronic colliders. As expected, we have obtained very compact expressions for the

amplitudes, allowing for a more convenient implementation in computer codes than those

obtained from automatic tree level computations methods.

2Stricktly speaking they are correct up to terms that must vanish in all possible soft and collinear limits,

which are very unlikely to exist.
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